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Abstract. A theoretical framework for treating a disordered Ising ternary alloy(ApB1−p)rC1−r
where A and B represent magnetic atoms and C represents non-magnetic atoms is discussed
within the effective-field theory with correlations. The magnetic properties of some disordered
alloys with spinsSA = 1

2 andSB = 1
2 (or SB = 3

2) are investigated within the framework. We
find some characteristic phenomena for a ferrimagnetic alloy withSB = 3

2 , such as an interesting
effect of non-magnetic atoms on a compensation point (or points).

1. Introduction

The magnetic properties of a disordered Ising binary alloy ApB1−p in which the lattice sites
are randomly occupied by two different types of magnetic atom (A and B, with spinsSA

and SB) have been investigated by many authors, using a variety of theoretical methods
(molecular-field theory, effective-field theory, CPA, Monte Carlo simulation). In these
studies, there has been some interest shown in the phase diagrams of a disordered binary
alloy consisting of spinsSA = SB = 1

2, with a transition temperatureTC(p) as a function
of concentrationp [1–3]. The phase diagrams have been usefully classified in terms of the
initial slopes∂ ln TC(p)/∂p of TC at p = 1 andp = 0, and six (or seven) phases have
been obtained from the possible nine phases, while molecular-field theory (MFT) predicts
only four possible phases. On the other hand, some attention has been paid to the study of
ferrimagnetic disordered binary alloys. In particular, Kaneyoshiet al [4–6] have proposed
recently the possibility of many compensation points in a disordered Ising ferrimagnetic
binary alloy withSA = 1

2 andSB >
1
2 as well as a thin ferrimagnetic film.

Amorphous ferromagnetic (or ferrimagnetic) alloys, in particular transition metal–
metalloid (or rare-earth–transition metal–metalloid) glasses, have been well studied exp-
erimentally for the purpose of fundamental research and with a view to technological
applications [7, 8]. They can be described by the general formula (ApB1−p)rC1−r where A
and B represent magnetic atoms with concentrationspr and (1− p)r, respectively, and C
is the non-magnetic metalloid with concentration 1− r. The concentration dependence of
TC has been intensively investigated experimentally, and a good correspondence between
experimental data and mean-field-type predictions can be found in [9]. The temperature
dependence of the total magnetization has been analysed by the use of the MFT [7]. As far
as we are aware, however, the magnetic properties of a disordered ferrimagnetic Ising ternary
alloy have not been discussed so far theoretically using a sophisticated theory superior to the
MFT. In particular, the effects of non-magnetic atoms on a compensation point (or points)
in the ferrimagnetic alloy have not been discussed.
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The aim of this work is to study the theoretical framework for a disordered Ising ternary
alloy (ApB1−p)rC1−r with SA = 1

2 and SB = S (> 1
2) in the effective-field theory with

correlations (EFT) [10, 11], which is superior to the MFT. The formulation is discussed in
section 2. In section 3, the initial slopes∂ ln TC(p)/∂p atp = 1 andp = 0 for a disordered
Ising ternary alloy withSA = SB = 1

2 are investigated, and the phase diagrams are examined
numerically for the system with the coordination numberz = 4. In section 4, we study
the magnetic properties of a disordered Ising ferrimagnetic ternary alloy withSA = 1

2 and
SB = 3

2. The effects of non-magnetic atoms on these properties are clarified numerically in
sections 3 and 4.

2. Formulation

We consider a ternary Ising alloy of the type (ApB1−p)rC1−r with sites randomly occupied
by three different species, where A and B are magnetic atoms and the C atoms are non-
magnetic. The Hamiltonian of the system is given by

H = −
∑
(ij)

∑
ν,ν ′=A or B

Jνν ′S
z
iνS

z
jν ′niνnjν ′ξiξj −D

∑
i

(SziB)
2niBξi (1)

where theJνν ′ are the exchange interactions between type-ν and type-ν ′ atoms (orJAA =
JA, JAB = JBA, JBB = JB), the Sziν are the spin variables of the type-ν atoms,niν = 1 if
the spini is of typeν, and 0 otherwise, and the

∑
(ij) refers to all nearest neighbours.ξi is

a random variable whose averaged value is given by〈ξi〉r = r when the sitei is occupied
by a magnetic atom. The averaged value ofniν is then given by〈niν〉r = p whenν = A
and 〈niν〉r = 1− p when ν = B. D is the crystal-field interaction constant of a B atom,
appearing whenSB >

1
2. The total magnetizationM of the system is given by

M

N
= r[pmA + (1− p)mB] (2)

whereN is the total number of atoms, and the averaged magnetizations are defined by

mA = 〈niAξi〈S
z
iA〉〉r

〈niAξi〉r mB = 〈niBξi〈S
z
iB〉〉r

〈niBξi〉r (3)

with

〈niAξi〉r = rp
and

〈niBξi〉r = r(1− p).
Using both the Ising spin identity and the differential operator technique ([10, 11], and

see the review [12]), the averaged magnetizations can be exactly represented in the forms

mA = 1

〈niAξi〉r

〈
niAξi

〈∏
j

[
1− ξj + njAξj

{
cosh

(
JA

2
∇
)
+ 2SzjA sinh

(
JA

2
∇
)}

+ njBξj

{
cosh(JABη∇)+

SzjB

η
sinh(JABη∇)

}]〉〉
r

FA(x)

∣∣∣∣
x=0

(4a)

mB = 1

〈niBξi〉r

〈
niAξi

〈∏
j

[
1− ξj + njAξj

{
cosh

(
JAB

2
∇
)
+ 2SzjA sinh

(
JAB

2
∇
)}

+ njBξj

{
cosh(JAη∇)+

SzjB

η
sinh(JBη∇)

}]〉〉
r

FB(x)

∣∣∣∣
x=0

(4b)
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where∇ = ∂/∂x is a differential operator. The parameterη defined whenSB >
1
2 is given

by

η2 = 〈niBξi〈(S
z
iB)

2〉〉r
〈niBξi〉r
= 1

〈niBξi〉r

〈
niBξi

〈∏
j

[
1− ξj + njAξj

{
cosh

(
JAB

2
∇
)
+ 2SzjA sinh

(
JAB

2
∇
)}

+ njBξj

{
cosh(JBη∇)+

SzjB

η
sinh(JBη∇)

}]〉〉
r

GB(x)

∣∣∣∣
x=0

. (5)

The functionFA(x) is

FA(x) = 1

2
tanh

(
βx

2

)
(6)

and the functionsFB(x) andGB(x) are dependent on the value ofSB, and are given by

FB(x) = 3 sinh(3βx/2)+ exp(−2Dβ) sinh(βx/2)

2 cosh(3βx/2)+ 2 exp(−2Dβ) cosh(βx/2)

GB(x) = 9 cosh(3βx/2)+ exp(−2Dβ) cosh(βx/2)

2 cosh(3βx/2)+ 2 exp(−2Dβ) cosh(βx/2)

(7)

for SB = 3
2, whereβ = 1/kBT .

Here, it is clear that, if we try to treat all of the spin–spin correlations appearing through
the expansions of (4) exactly, the problem becomes mathematically intractable. In the EFT,
the decoupling approximation, or

〈〈xiνxjν ′ · · · xkν ′′ 〉〉r ≈ 〈〈xiν〉〉r〈〈xjν ′ 〉〉r · · · 〈〈xkν ′′ 〉〉r (8)

with i 6= j 6= · · · 6= k and xiν = Sziνniνξi , has been used. In fact, this approximation
corresponds to the Zernike approximation for the spin-1

2 Ising ferromagnet [12]. The approx-
imation has been successfully applied to a great number of magnetic systems. Within the
EFT, the magnetizations (4) and the equation (5) are given by

mA =
[

1− r + rp
{

cosh

(
JA

2
∇
)
+ 2mA sinh

(
JA

2
∇
)}

+ r(1− p)
{

cosh(JABη∇)+ mB

η
sinh(JABη∇)

}]z
FA(x)

∣∣∣∣
x=0

(9a)

mB =
[

1− r + rp
{

cosh

(
JAB

2
∇
)
+ 2mA sinh

(
JAB

2
∇
)}

+ r(1− p)
{

cosh(JBη∇)+ mB

η
sinh(JBη∇)

}]z
FB(x)

∣∣∣∣
x=0

(9b)

and

η2 =
[

1− r + rp
{

cosh

(
JAB

2
∇
)
+ 2mA sinh

(
JAB

2
∇
)}

+ r(1− p)
{

cosh(JBη∇)+ mB

η
sinh(JBη∇)

}]z
GB(x)

∣∣∣∣
x=0

(9c)

wherez is the coordination number.
We are now interested in investigating the magnetic properties of a disordered Ising

ternary alloy. The problems are examined in the following sections by selecting separately
two values ofSB, namelySB = 1

2 andSB = 3
2.
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3. Phase diagrams of a system withSB = 1/2

In this section, let us study the phase diagram of a disordered Ising ternary alloy with
SA = SB = 1

2. With this aim, we use the usual argument thatmα (α = A or B) tends to
zero as the temperature approaches a critical temperature, which allows us to consider just
terms linear inmα. In particular, the parameterη for the system withSB = 1

2 is exactly
given byη = 1

2 [11]. By the use of these procedures, the critical temperatureTC (or phase
diagram) of a disordered ternary alloy can be determined by solving the relation

[2zrpK1− 1][2zr(1− p)K4− 1] = 4(zr)2p(1− p)K2K3 (10)

with

K1 = sinh

(
JA

2
∇
)[

1− r + rp cosh

(
JA

2
∇
)
+ r(1− p) cosh

(
JAB

2
∇
)]z−1

f (x)

∣∣∣∣∣
x=0

(11a)

K2 = sinh

(
JAB

2
∇
)[

1− r + rp cosh

(
JA

2
∇
)
+ r(1− p) cosh

(
JAB

2
∇
)]z−1

f (x)

∣∣∣∣∣
x=0

(11b)

K3 = sinh

(
JAB

2
∇
)[

1− r + rp cosh

(
JAB

2
∇
)
+ r(1− p) cosh

(
JB

2
∇
)]z−1

f (x)

∣∣∣∣∣
x=0

(11c)

K4 = sinh

(
JB

2
∇
)[

1− r + rp cosh

(
JAB

2
∇
)
+ r(1− p) cosh

(
JB

2
∇
)]z−1

f (x)

∣∣∣∣∣
x=0

(11d)

where the functionf (x) is defined byf (x) = FB(x) = FA(x) given by (6).TC depends on
the values ofJA, JAB, JB, p, r andz. In particular, one should be aware of the following
facts.

(i) TC determined from (10) is independent of the sign ofJAB, or (10) is valid for the
ferromagnetic (JAB > 0) case as well as for the antiferromagnetic (JAB < 0) case.

(ii) When r = 1, the relation (10) is equivalent to that for a disordered binary alloy
discussed in [2].

The initial slopes∂ ln TC(p)/∂p at p = 1 andp = 0 can be obtained by differentiating
(10) with respect top. Without loss of generality, we suppose thatTC(p = 1) > TC(p = 0)
(or JA > JB) and also thatJAB > 0 for studying the phase diagram. Then, the simplest
possible phase boundary is a straight-line extrapolation forTC(p) betweenTC(0) andTC(1).
Furthermore, the three possible types of behaviour can be identified from the initial slopes
at p = 0: (1) a slope greater than that of the linear extrapolation, (2) a slope less than that
of the linear extrapolation but greater than zero, and (3) a slope less than zero. There are
also three similar types of behaviour atp = 1. These phase boundaries can be given by the
following relations:[

∂ ln TC(p)

∂p

]
p=1

= 0 (12a)[
∂ ln TC(p)

∂p

]
p=1

= TC(p = 1)− TC(p = 0)

TC(p = 1)
(12b)



Magnetic properties of disordered Ising ternary alloys 5363

Figure 1. Possible kinds of phase diagram in the space(JAB/
√
JAJB, JB/JA) of the Ising

ferromagnetic ternary alloy withz = 4 (on a square lattice), when the two values ofr are
selected. In particular, the results forr = 1 (solid lines) are equivalent to those for the Ising
binary alloy [2]. The dashed lines represent the results forr = 0.7. The six kinds of phase
diagram(S,S′,A,A′,B and B1) are shown, where the nomenclature of [1] is used. The black
points a–d are the points for which the complete phase boundaries are shown in figure 2.

[
∂ ln TC(p)

∂p

]
p=0

= 0 (12c)[
∂ ln TC(p)

∂p

]
p=0

= TC(p = 1)− TC(p = 0)

TC(p = 0)
. (12d)

Nine phase diagrams may be possible from these phase boundaries. But, one should
note the following facts. The initial slopes by no means provide a complete description
of the phase diagram obtained by solving (10) numerically, namely obtainingTC(p) as a
function of p. They do however, severely restrict what can occur and so can be used as
the basis of a classification scheme.

We are in a position to examine the phase diagrams of a system by solving (10) and (12)
numerically. In order to compare them with the previous ones obtained for a disordered
Ising binary alloy [2], the numerical results are shown for a square lattice(z = 4).

Figure 1 shows a classification of the phase diagrams of the system withz = 4 which is
plotted in the space(JAB/

√
JAJB, JB/JA), for two selected values ofr (r = 1 andr = 0.7).
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(a)

Figure 2. Complete phase boundaries forz = 4. The ratios(JAB/
√
JAJB, JB/JA) for the

black points a–d marked in figure 1 are as follows: a: (0.2, 0.3); b: (1.0, 0.3); c: (1.5, 0.3) and
d: (2.5, 0.3). The dashed lines are to guide the eye only. Parts (a) and (b) are respectively for
r = 1 andr = 0.7.

The results have been determined from the initial slopes (12). In the figure, we used the
same notation in describing the kinds of phase diagram as was used in [1–3], namely
T,A,A′,B,B1,S,S′,S1 and S′1. The results forr = 1 are equivalent to those found in [2] for
the binary Ising alloy withz = 4. Only six kinds of phase diagram(A,A′,B,B1,S and S′)
are permitted from the nine possible phases. Comparing the results forr = 1 (solid lines)
with those forr = 0.7 (dashed lines), the boundaries obtained from(12a) and (12c) are
seen to be insensitive to the variation ofr. In particular, with the decrease ofr the region
of parameter space in which S and S′ occur are extremely expanded, while the regions in
which A and A′ occur become narrower in comparison with the corresponding regions for
r = 1. Features similar to these have been also observed in the phase diagram of a binary
alloy with random bonds [3]. Thus, such features may be specific characteristics resulting
from the randomness in binary or ternary alloys.

In figure 2, the overall behaviour ofTC(p) as a function ofp is depicted; it was
obtained by solving (10) numerically for the systems withr = 1 (figure 2(a)) andr = 0.7
(figure 2(b)), selecting the special values ofJAB, JA and JB that are labelled in figure 1
(the black points a–d in figure 1). At first sight, the diagrams seem very similar for the
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(b)

Figure 2. (Continued)

two (r = 1 or r = 0.7) cases. Looking at them in detail, however, one can find different
behaviours ofTC(p), especially in the vicinity ofp = 0, as is expected from figure 1.

Finally, let us examine the effect of dilution onTC for the ternary alloy by selecting the
typical values ofJAB, JA andJB (JAB/JA = 0.707 andJB/JA = 0.5) labelled in figure 1
and changing the value ofp. The results are shown in figure 3 for five values ofp. In
particular, the curves forp = 1 andp = 0 are equivalent to those for the dilution in
the spin-12 Ising ferromagnet on a square lattice [14]. As discussed in [14], the critical
concentrationrC at whichTC(r) reduces to zero is given byrC = 0.4284 for the systems
with p = 1 andp = 0. When 0< p < 1, theTC-curve as a function ofr reduces to zero
at the same critical concentrationrC as those forp = 1 andp = 0. This, indicates that the
decoupling approximation (or the EFT) gives reasonable results for the present problem.

4. Ferrimagnetism in the system withSB = 3/2

In this part, let us study the role of non-magnetic atoms in the magnetic properties of the
disordered Ising ferrimagnetic ternary alloy withz = 3 andSB = 3

2, since in the previous
work [4] the magnetic properties of the corresponding ferrimagnetic binary alloy ApB1−p
have been examined.

The transition temperatureTC of a disordered ternary alloy is then determined from the
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Figure 3. The concentration dependence ofTC(p) for the diluted Ising ternary alloy withz = 4,
when the ratiosJAB/JA andJB/JA are fixed atJAB/JA = 0.707 andJB/JA = 0.5 and various
values ofp are selected. The results forp = 1 andp = 0 are equivalent to those for the diluted
Ising binary alloy withz = 4 [13].

relation

[2zrpK1− 1]

[
zr(1− p)R2

η0
− 1

]
= 2(zr)2p(1− p)R1K2

η0
(13)

with

K1 = sinh

(
JA

2
∇
)[

1− r + r
{
p cosh

(
JA

2
∇
)
+ (1− p) cosh(JABη0∇)

}]z−1

FA(x)

∣∣∣∣
x=0

(14a)

K2 = sinh

(
JABη0

2
∇
)[

1− r + r
{
p cosh

(
JA

2
∇
)
+ (1− p) cosh(JABη0∇)

}]z−1

FA(x)

∣∣∣∣
x=0

(14b)

R1 = sinh

(
JAB

2
∇
)[

1− r + r
{
p cosh

(
JAB

2
∇
)
+ (1− p) cosh(JBη0∇)

}]z−1

FB(x)

∣∣∣∣
x=0

(14c)

R2 = sinh

(
JBη0

2
∇
)[

1− r + r
{
p cosh

(
JAB

2
∇
)
+ (1− p) cosh(JBη0∇)

}]z−1

FB(x)

∣∣∣∣
x=0

(14d)
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Figure 4. The phase diagram (TC andTCOMP versusp curves) of the disordered ferrimagnetic
ternary alloy with z = 3, when the parameters are fixed atJAB/JA = −0.5, JB/JA =
0.05,D/JA = 0.0 and the value ofr is changed fromr = 1.0 to 0.6. The solid and dashed
lines represent respectively the compensation temperatureTCOMP and the Curie temperatureTC

of the system.

Figure 5. TC (dashed line) andTCOMP (solid line) for the system withz = 3 plotted as a
function of |JAB |/JA, when the parameters are fixed atp = 0.745, JB/JA = 0.5,D/JA = 0.0,
and the value ofr is changed fromr = 1.0 to 0.6.
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(a)

(b)

Figure 6. The |M|/N versusT curves for the system withp = 0.745, JB/JA = 0.5,D/JA =
0.0 and z = 3, when the value ofr is changed fromr = 1.0 to 0.6 and the three values
of JAB/JA are selected from the phase diagram of figure 5;JAB/JA = −0.45 for panel (a),
JAB/JA = −0.54 for panel (b),JAB/JA = −0.59 for panel (c).
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(c)

Figure 6. (Continued)

where the parameterη0 can be evaluated from

(η0)
2 =

[
1− r + rp cosh

(
JAB

2

)
+ (1− p) cosh(JBη0∇)

]z
GB(x)

∣∣∣∣
x=0

. (15)

A compensation point, at which the total magnetization vanishes below the transition temp-
erature, in the system can be determined by substituting the condition

M

N
= 0 (16)

in (2). Here, the following fact must be noted: the exchange interactionJAB is given by a
negative value, in order for the present system to be ferrimagnetic.

Let us now examine the magnetic properties of the ferrimagnetic system withz = 3
by solving (13), (9) and (16) numerically. Figure 4 shows a typical phase diagram (TC

andTCOMP versusp) for the ferrimagnetic system, whenJAB/JA = −0.5, JB/JA = 0.05,
D/JA = 0.0 and the value ofr is changed. For real ferrimagnetic ternary alloys based
on rare earths (RE) and transition metals (T), the relationJA(JT−T) > −JAB(JRE−T) >

JB(JRE−RE) is normally satisfied. The solid and dashed lines represent theTCOMP- andTC-
curves, respectively. Whenr = 1.0, theTCOMP-curve reduces to zero atp = 0.75, since
at T = 0 K, SA = 1

2 andSB = 3
2 in (16). With the decrease ofr, the sublattice magnet-

izations atT = 0 K decrease from their saturation values, and hence the critical value ofp

at whichTCOMP= 0 may decrease a little, moving to the left-hand side, fromp = 0.75. As
shown in figure 4, the region ofp in which a compensation point can be obtained becomes
narrow, when the concentration of non-magnetic atoms increases. As far as we are aware,
such a phenomenon has not previously been reported.
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In [4], the possibility of more than one compensation point in a binary ferrimagnetic
alloy with z = 3 has been discussed within the framework of the EFT, selectingD/JA = 0.0,
JB/JA = 0.5, p = 0.745 and changing the value of|JAB/JA | (see figure 5(a) in [4]). Let
us next study the effect of non-magnetic atoms on theTCOMP-curve for the ternary alloy
system withD/JA = 0.0, JB/JA = 0.5 andp = 0.745. The numerical results are depicted
in figure 5. The solid and dashed lines denote theTCOMP- andTC-curves, respectively. The
results labelledr = 1.0 are equivalent to those in figure 5(a) of [4] and there is a possibility
of two compensation points over a rather wide region of|JAB/JA |. The results of figure 5
indicate some interesting facts.

(i) The possibility of two compensation points becomes gradually less with the increase
in the number of non-magnetic atoms.

(ii) The region of|JAB/JA | in which one can find a compensation point becomes wider
with the decrease ofr from r = 1.

In particular, phenomenon (ii) is clearly different to what is shown in figure 4.
In order to clarify the prediction of figure 5, the temperature dependence of the total

magnetization|M|/N in the system withp = 0.745, JB/JA = 0.5 andD/JA = 0.0 has
been plotted in figure 6, selecting the special values ofJAB/JA chosen in figure 5:−0.45
for figure 6(a),−0.54 for figure 6(b) and−0.59 for figure 6(c). As is seen from the figures,
one can find some characteristic magnetization curves not predicted in the Néel theory of
ferrimagnetism [15, 16], such as the curve labelledr = 0.7 in figure 6(c).

Figure 7. The phase diagram of the ferrimagnetic system obtained withz = 3, JAB/JA =
−2.465, JB/JA = 0.1,D/JA = −2.0 and with the concentration nearp = 0.5, when the value
of r is changed fromr = 1.0 to 0.7. The solid and dashed lines represent respectively the
compensation temperatureTCOMP and the Curie temperatureTC of the system.

Figure 7 shows the possibility of three compensation points in the system with
JB/JA = 0.1, JAB/JA = −2.465,D/JA = −2.0 and r = 1.0; the result is consistent
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Figure 8. The |M|/N versusT curves for the system obtained withp = 0.495, JAB/JA =
−2.465, JB/JA = 0.1,D/JA = −2.0 andz = 3, when the value ofr is changed fromr = 1.0
to 0.7.

with that of figure 6(a) in [4]. With the decrease ofr, the possibility immediately becomes
an impossibility. For the systems withr = 0.9 and 0.8, only one compensation point is
observed over a wide range ofp, although the region in which one can find a compensation
point for the system withr = 0.7 becomes narrower than that forr = 0.8. In particular,
the effect of non-magnetic atoms on the temperature dependence ofM/N for the system
with p = 0.495, JB/JA = 0.1, JAB/JA = −2.465 andD/JA = −2.0 is shown in figure 8,
for four selected values ofr. The figure also shows that the three compensation points for
the system withr = 1 quickly become impossible with the decrease ofr.

5. Conclusions

In this work, we have discussed the theoretical framework for the magnetic properties of
a disordered Ising ternary alloy (ApB1−p)rC1−r consisting of two kinds of magnetic atom,
A and B, with spinsSA = 1

2 andSB = S (> 1
2), and a non-magnetic atom C, on the basis

of the effective-field theory with correlations. The formulation given in section 2 can be
applied to any system with a certain value ofS.

In section 3, the formulation was applied to the examination of phase diagrams for the
system withz = 4 (the square lattice) andSA = SB = 1

2. As depicted in figures 2 and 3,
the numerical results are reasonable, which also implies that the decoupling approximation
(8) (or the EFT) has physical meaning. Figure 1 clearly shows that with dilution the
regions representing the phases A and A′ decrease and instead the regions representing S
and S′ may increase, although the number of possible phases is always fixed at six. We
have compared our model system without non-magnetic atoms to real materials such as
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Fe–Co-based amorphous alloys and found good agreement [17].
In section 4, we have examined the effects of non-magnetic atoms on the magnetic

properties of the disordered ferrimagnetic Ising ternary alloy withz = 3. With the decrease
of r, as shown in figure 4, theTCOMP-curve for a system withJA > −JAB > JB becomes
narrow in the region of|JAB/JA |. As shown in figures 5 and 7, the possibility of more
than one compensation point in the ferrimagnetic binary alloy withr = 1 is easily removed
by substituting non-magnetic atoms into the alloy. Some interesting thermal variations of
the total magnetization in the ferrimagnetic system are expected with the decrease ofr, as
depicted in figure 6(c).

Finally, the present formulation discussed in section 2 can be applied to a disordered
Ising ternary alloy with an arbitrary value ofSB, while in this work we have discussed only
the two systems withSB = 1

2 andSB = 3
2. We assume that study of a ferrimagnetic ternary

alloy system withSB = an integer spin value will be interesting, since tricritical behaviour
may be found for this system with a negative value ofD [18]. We hope to investigate this
problem in the future.
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